Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 337.684
Filtrar
1.
Cell Death Dis ; 15(4): 255, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600086

RESUMO

Excessive STAT3 signalling via gp130, the shared receptor subunit for IL-6 and IL-11, contributes to disease progression and poor survival outcomes in patients with colorectal cancer. Here, we provide evidence that bazedoxifene inhibits tumour growth via direct interaction with the gp130 receptor to suppress IL-6 and IL-11-mediated STAT3 signalling. Additionally, bazedoxifene combined with chemotherapy synergistically reduced cell proliferation and induced apoptosis in patient-derived colon cancer organoids. We elucidated that the primary mechanism of anti-tumour activity conferred by bazedoxifene treatment occurs via pro-apoptotic responses in tumour cells. Co-treatment with bazedoxifene and the SMAC-mimetics, LCL161 or Birinapant, that target the IAP family of proteins, demonstrated increased apoptosis and reduced proliferation in colorectal cancer cells. Our findings provide evidence that bazedoxifene treatment could be combined with SMAC-mimetics and chemotherapy to enhance tumour cell apoptosis in colorectal cancer, where gp130 receptor signalling promotes tumour growth and progression.


Assuntos
Neoplasias do Colo , Indóis , Interleucina-11 , Humanos , Interleucina-11/uso terapêutico , Linhagem Celular Tumoral , Interleucina-6/metabolismo , Receptor gp130 de Citocina/metabolismo , Neoplasias do Colo/tratamento farmacológico , Apoptose
2.
Commun Biol ; 7(1): 441, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600351

RESUMO

ABTRACT: Clinical circulating cell-free DNA (cfDNA) testing is now routine, however test accuracy remains limited. By understanding the life-cycle of cfDNA, we might identify opportunities to increase test performance. Here, we profile cfDNA release across a 24-cell line panel and utilize a cell-free CRISPR screen (cfCRISPR) to identify mediators of cfDNA release. Our panel outlines two distinct groups of cell lines: one which releases cfDNA fragmented similarly to clinical samples and purported as characteristic of apoptosis, and another which releases larger fragments associated with vesicular or necrotic DNA. Our cfCRISPR screens reveal that genes mediating cfDNA release are primarily involved with apoptosis, but also identify other subsets of genes such as RNA binding proteins as potential regulators of cfDNA release. We observe that both groups of cells lines identified primarily produce cfDNA through apoptosis. These results establish the utility of cfCRISPR, genetically validate apoptosis as a major mediator of DNA release in vitro, and implicate ways to improve cfDNA assays.


Assuntos
Ácidos Nucleicos Livres , Ácidos Nucleicos Livres/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Apoptose/genética , DNA/genética , Linhagem Celular
3.
Cell Mol Biol Lett ; 29(1): 51, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600465

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) play essential roles in the tumorigenesis of gastric cancer. However, the influence of lncRNA methylation on gastric cancer stem cells (GCSCs) remains unclear. METHODS: The N6-methyladenosine (m6A) levels of lncRNAs in gastric cancer stem cells were detected by methylated RNA immunoprecipitation sequencing (MeRIP-seq), and the results were validated by MeRIP-quantitative polymerase chain reaction (qPCR). Specific sites of m6A modification on lncRNAs were detected by single-base elongation- and ligation-based qPCR amplification (SELECT). By constructing and transfecting the plasmid expressing methyltransferase-like 3 (METTL3) fused with catalytically inactivated Cas13 (dCas13b) and guide RNA targeting specific methylation sites of lncRNAs, we obtained gastric cancer stem cells with site-specific methylation of lncRNAs. Reverse transcription (RT)-qPCR and Western blot were used for detecting the stemness of treated gastric cancer stem cells. RESULTS: The site-specific methylation of PSMA3-AS1 and MIR22HG suppressed apoptosis and promoted stemness of GCSCs. LncRNA methylation enhanced the stability of PSMA3-AS1 and MIR22HG to suppress apoptosis of GCSCs via the PSMA3-AS1-miR-411-3p- or MIR22HG-miR-24-3p-SERTAD1 axis. Simultaneously, the methylated lncRNAs promoted the interaction between PSMA3-AS1 and the EEF1A1 protein or MIR22HG and the LRPPRC protein, stabilizing the proteins and leading to the suppression of apoptosis. The in vivo data revealed that the methylated PSMA3-AS1 and MIR22HG triggered tumorigenesis of GCSCs. CONCLUSIONS: Our study revealed the requirement for site-specific methylation of lncRNAs in the tumorigenesis of GCSCs, contributing novel insights into cancer development.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , RNA Guia de Sistemas CRISPR-Cas , Carcinogênese/genética , Apoptose/genética , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Metiltransferases/genética
4.
Mol Biol Rep ; 51(1): 567, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656394

RESUMO

BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.


Assuntos
Ácido 3-Hidroxibutírico , Apoptose , Glucose , Neoplasias Pulmonares , Potencial da Membrana Mitocondrial , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Estresse Oxidativo/efeitos dos fármacos , Glucose/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Células A549 , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Ácido 3-Hidroxibutírico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Antígeno AC133/metabolismo , Antígeno AC133/genética
5.
Technol Cancer Res Treat ; 23: 15330338241241935, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564315

RESUMO

Hepatocellular carcinoma (HCC), partly because of its complexity and high heterogeneity, has a poor prognosis and an extremely high mortality rate. In this study, mRNA sequencing expression profiles and relevant clinical data of HCC patients were gathered from different public databases. Kaplan-Meier survival curves as well as ROC curves validated that OLA1|CLEC3B was an independent predictor with better predictive capability of HCC prognosis compared to OLA1 and CLEC3B separately. Further, the cell transfection experiment verified that knockdown of OLA1 inhibited cell proliferation, facilitated apoptosis, and improved sensitivity of HCC cells to gemcitabine. In this study, the prognostic model of HCC composed of OLA1/CLEC3B genes was constructed and verified, and the prediction ability was favorable. A higher level of OLA1 along with a lower level of CEC3B is a sign of poor prognosis in HCC. We revealed a novel gene pair OLA1|CLEC3B overexpressed in HCC patients, which may serve as a promising independent predictor of HCC survival and an approach for innovative diagnostic and therapeutic strategies.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , Neoplasias Hepáticas/genética , Apoptose/genética , Proliferação de Células/genética , Adenosina Trifosfatases , Proteínas de Ligação ao GTP
6.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567463

RESUMO

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Assuntos
Autofagia , Neoplasias Colorretais , Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Ouro/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas Metálicas/química , Autofagia/efeitos dos fármacos , Acetilação , Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/tratamento farmacológico , Células HT29 , Caspases/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
7.
J Med Chem ; 67(8): 6673-6686, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38569098

RESUMO

The use of benzimidazole-based trinuclear ruthenium(II)-arene complexes (1-3) to selectively target the rare cancer rhabdomyosarcoma is reported. Preliminary cytotoxic evaluations of the ruthenium complexes in an eight-cancer cell line panel revealed enhanced, selective cytotoxicity toward rhabdomyosarcoma cells (RMS). The trinuclear complex 1 was noted to show superior short- and long-term cytotoxicity in RMS cell lines and enhanced selectivity relative to cisplatin. Remarkably, 1 inhibits the migration of metastatic RMS cells and maintains superior activity in a 3D multicellular spheroid model in comparison to that of the clinically used cisplatin. Mechanistic insights reveal that 1 effectively induces genomic DNA damage, initiates autophagy, and prompts the intrinsic and extrinsic apoptotic pathways in RMS cells. To the best of our knowledge, 1 is the first trinuclear ruthenium(II) arene complex to selectively kill RMS cells in 2D and 3D cell cultures.


Assuntos
Antineoplásicos , Apoptose , Complexos de Coordenação , Rabdomiossarcoma , Rutênio , Humanos , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Rutênio/química , Rutênio/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Apoptose/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Dano ao DNA/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/química , Benzimidazóis/síntese química , Autofagia/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
8.
Chem Biol Drug Des ; 103(2): e14467, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38661582

RESUMO

Paclitaxel (PTX) is one of the first-line chemotherapeutic agents for treating breast cancer. However, PTX resistance remains a major hurdle in breast cancer therapy. Crocin, the main chemical constituent of saffron, shows anti-cancer activity against various types of cancer. However, the effect of crocin on the resistance of PTX in breast cancer is still unknown. CCK-8 and TUNEL assays were employed to detect cell viability and apoptosis, respectively. The targets of crocin were predicted using HERB database and the targets associated with breast cancer were acquired using GEPIA database. The Venn diagram was utilized to identify the common targets between crocin and breast cancer. Baculoviral inhibitor of apoptosis repeat containing 5 (BIRC5) expression was detected by qRT-PCR and western blot analysis. The correlation between BIRC5 expression and survival was analyzed by Kaplan-Meier plotter and PrognoScan databases. Our data suggested that crocin aggravated PTX-induced decrease of viability and increase of apoptosis in MCF-7 and MCF-7/PTX cells. BIRC5 was identified as the target of crocin against breast cancer. Crocin inhibited BIRC5 expression in MCF-7 and MCF-7/PTX cells. BIRC5 is overexpressed in breast cancer tissues, as well as PTX-sensitive and PTX-resistant breast cancer cells. BIRC5 expression is related to the poor survival of patients with breast cancer. Depletion of BIRC5 strengthened PTX-induced viability reduction and promotion of apoptosis in MCF-7 and MCF-7/PTX cells. Moreover, BIRC5 overexpression reversed the inhibitory effect of crocin on PTX resistance in breast cancer cells. In conclusion, crocin enhanced the sensitivity of PTX in breast cancer cells partially through inhibiting BIRC5 expression.


Assuntos
Apoptose , Neoplasias da Mama , Carotenoides , Paclitaxel , Survivina , Humanos , Paclitaxel/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Survivina/metabolismo , Survivina/genética , Carotenoides/farmacologia , Carotenoides/química , Células MCF-7 , Apoptose/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Linhagem Celular Tumoral
9.
Cell Biochem Funct ; 42(3): e4018, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644608

RESUMO

Long noncoding RNAs (lncRNAs) are a category of noncoding RNAs characterized by their length, often exceeding 200 nucleotides. There is a growing body of data that indicate the significant involvement of lncRNAs in a wide range of disorders, including cancer. lncRNA H19 was among the initial lncRNAs to be identified and is transcribed from the H19 gene. The H19 lncRNA exhibits significant upregulation in a diverse range of human malignancies, such as breast, colorectal, pancreatic, glioma, and gastric cancer. Moreover, the overexpression of H19 is frequently associated with a worse prognosis among individuals diagnosed with cancer. H19 has been shown to have a role in facilitating several cellular processes, including cell proliferation, invasion, migration, epithelial-mesenchymal transition, metastasis, and apoptosis. This article summarizes the aberrant upregulation of H19 in human malignancies, indicating promising avenues for future investigations on cancer diagnostics and therapeutic interventions.


Assuntos
Neoplasias , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Apoptose , Regulação Neoplásica da Expressão Gênica , Movimento Celular
10.
Mol Reprod Dev ; 91(4): e23742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644727

RESUMO

Preeclampsia (PE) is a common pregnancy complication with a high mortality rate. Abnormally activated endoplasmic reticulum stress (ERS) is believed to be responsible for the destruction of key placental cells-trophoblasts. Phenylbutyric acid (4-PBA), an ERS inhibitor, is involved in regulating the development of ERS-related diseases. At present, how 4-PBA affects trophoblasts and its mechanisms is still unclear. In this study, PE cell models were established by stimulating HTR-8/SVneo cells with hypoxia. To verify the underlying mechanisms of 4-PBA on PE, CCT020312, an activator of PERK, was also used. The results showed that 4-PBA restored hypoxia-induced trophoblast viability, inhibited HIF-1α protein expression, inflammation, and PERK/ATF-4/CHOP pathway. Hoechst 33342 staining and flow cytometry results confirmed that 4-PBA decreased hypoxia-induced apoptosis in trophoblasts. The results of the JC-1 analysis and apoptosis initiation enzyme activity assay also demonstrated that 4-PBA inhibited apoptosis related to the mitochondrial pathway. Furthermore, by detecting autophagy in trophoblasts, an increased number of autophagic vesicles, damaged mitochondria, enhanced dansylcadaverine fluorescence, enhanced levels of autophagy proteins Beclin-1, LC3II, and decreased p62 were seen in hypoxia-stimulated cells. These changes were reversed by 4-PBA. Furthermore, it was observed that CCT020312 reversed the effects of 4-PBA on the viability, apoptosis, and autophagosome number of hypoxia-induced trophoblasts. In summary, 4-PBA reduces autophagy and apoptosis via the PERK/ATF-4/CHOP pathway and mitochondrial pathway, thereby restoring the viability of hypoxic trophoblasts. These findings provide a solid evidence base for the use of 4-PBA in PE treatment and guide a new direction for improving the outcomes of patients with PE.


Assuntos
Fator 4 Ativador da Transcrição , Apoptose , Autofagia , Hipóxia Celular , Fenilbutiratos , Pré-Eclâmpsia , Fator de Transcrição CHOP , Trofoblastos , eIF-2 Quinase , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Trofoblastos/patologia , Feminino , Humanos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/patologia , Autofagia/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Apoptose/efeitos dos fármacos , Gravidez , Fenilbutiratos/farmacologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Hipóxia Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Linhagem Celular
11.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 249-255, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38645848

RESUMO

Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Mitocôndrias , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/etiologia , Mitocôndrias/metabolismo , Disco Intervertebral/metabolismo , Disco Intervertebral/citologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Animais , Antioxidantes/farmacologia
12.
Cell Death Dis ; 15(4): 293, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664366

RESUMO

Research and development on Nectin-4 antibody-drug conjugates (ADC) have been greatly accelerated since the approval of enfortumab vedotin to treat uroepithelial cancer. During the course of this study, we identified that autophagy serves as a cytoprotective mechanism during Nectin-4-MMAE treatment and proposed a strategy to enhance the antitumor effects of Nectin-4-MMAE in bladder cancer. Nectin-4-MMAE rapidly internalized into bladder cancer cells in 30 minutes and released MMAE, inducing the onset of caspase-mediated apoptosis and leading to the inhibition of tumor cell growth. Transcriptomics showed significant alterations in autophagy-associated genes in bladder cancer cells treated with Nectin-4-MMAE, which suggested autophagy was activated by Nectin-4-MMAE. Furthermore, autophagy activation was characterized by ultrastructural analysis of autophagosome accumulation, immunofluorescence of autophagic flux, and immunoblotting autophagy marker proteins SQSTM1 and LC3 I/II. Importantly, inhibiting autophagy by LY294002 and chloroquine significantly enhances the cytotoxicity effects of Nectin-4-MMAE in bladder cancer cells. Additionally, we detected the participation of the AKT/mTOR signaling cascade in the induction of autophagy by Nectin-4-MMAE. The combination of Nectin-4-MMAE and an autophagy inhibitor demonstrated enhanced antitumor effects in the HT1376 xenograft tumor model. After receiving a single dose of Nectin-4-MMAE, the group that received the combination treatment showed a significant decrease in tumor size compared to the group that received only one type of treatment. Notably, one mouse in the combination treatment group achieved complete remission of the tumor. The combination group exhibited a notable rise in apoptosis and necrosis, as indicated by H&E staining and immunohistochemistry (cleaved caspase-3, ki67). These findings demonstrated the cytoprotective role of autophagy during Nectin-4-MMAE treatment and highlighted the potential of combining Nectin-4-MMAE with autophagy inhibitors for bladder cancer treatment.


Assuntos
Autofagia , Moléculas de Adesão Celular , Morfolinas , Nectinas , Neoplasias da Bexiga Urinária , Autofagia/efeitos dos fármacos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/genética , Humanos , Animais , Linhagem Celular Tumoral , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular/genética , Camundongos , Morfolinas/farmacologia , Morfolinas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Oligopeptídeos/farmacologia , Apoptose/efeitos dos fármacos , Camundongos Nus , Cromonas/farmacologia , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Camundongos Endogâmicos BALB C , Feminino , Proteínas Proto-Oncogênicas c-akt/metabolismo
13.
Nat Commun ; 15(1): 3481, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664417

RESUMO

Viral myocarditis, an inflammatory disease of the myocardium, is a significant cause of sudden death in children and young adults. The current coronavirus disease 19 pandemic emphasizes the need to understand the pathogenesis mechanisms and potential treatment strategies for viral myocarditis. Here, we found that TRIM29 was highly induced by cardiotropic viruses and promoted protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated endoplasmic reticulum (ER) stress, apoptosis, and reactive oxygen species (ROS) responses that promote viral replication in cardiomyocytes in vitro. TRIM29 deficiency protected mice from viral myocarditis by promoting cardiac antiviral functions and reducing PERK-mediated inflammation and immunosuppressive monocytic myeloid-derived suppressor cells (mMDSC) in vivo. Mechanistically, TRIM29 interacted with PERK to promote SUMOylation of PERK to maintain its stability, thereby promoting PERK-mediated signaling pathways. Finally, we demonstrated that the PERK inhibitor GSK2656157 mitigated viral myocarditis by disrupting the TRIM29-PERK connection, thereby bolstering cardiac function, enhancing cardiac antiviral responses, and curbing inflammation and immunosuppressive mMDSC in vivo. Our findings offer insight into how cardiotropic viruses exploit TRIM29-regulated PERK signaling pathways to instigate viral myocarditis, suggesting that targeting the TRIM29-PERK axis could mitigate disease severity.


Assuntos
Adenina/análogos & derivados , Estresse do Retículo Endoplasmático , Indóis , Miocardite , Miócitos Cardíacos , eIF-2 Quinase , Animais , Miocardite/virologia , Miocardite/metabolismo , Miocardite/patologia , eIF-2 Quinase/metabolismo , eIF-2 Quinase/genética , Masculino , Camundongos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/virologia , Miócitos Cardíacos/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Espécies Reativas de Oxigênio/metabolismo , Camundongos Knockout , Transdução de Sinais , Humanos , Camundongos Endogâmicos C57BL , Apoptose , Replicação Viral , Miocárdio/patologia , Miocárdio/metabolismo
14.
Sci Rep ; 14(1): 9540, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664447

RESUMO

Triple-negative breast cancer (TNBC) is a metastatic disease and a formidable treatment challenge as it does not respond to existing therapies. Epigenetic regulators play a crucial role in the progression and metastasis by modulating the expression of anti-apoptotic, pro-apoptotic markers and related miRNAs in TNBC cells. We have investigated the anti-TNBC potential of dietary flavonoid 'Apigenin' and its combination with Vorinostat on MDA-MB-231 cells. At Apigenin generated ROS, inhibited cell migration, arrested the cell cycle at subG0/G1 phases, and induced apoptotic-mediated cell death. Apigenin reduced the expression of the class-I HDACs at the transcriptomic and proteomic levels. In the immunoblotting study, Apigenin has upregulated pro-apoptotic markers and downregulated anti-apoptotic proteins. Apigenin inhibited the enzymatic activity of HDAC/DNMT and increased HAT activity. Apigenin has manifested its effect on miRNA expression by upregulating the tumor-suppressor miR-200b and downregulation oncomiR-21. Combination study reduced the growth of TNBC cells synergistically by modulating the expression of epigenetic and apoptotic regulators. Molecular docking and MD simulations explored the mechanism of catalytic inhibition of HDAC1 and HDAC3 and supported the in-vitro studies. The overall studies demonstrated an anti-TNBC potential of Apigenin and may help to design an effective strategy to treat metastatic phenotype of TNBC.


Assuntos
Apigenina , Apoptose , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias de Mama Triplo Negativas , Vorinostat , Apigenina/farmacologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Apoptose/efeitos dos fármacos , Vorinostat/farmacologia , Epigênese Genética/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Feminino , Movimento Celular/efeitos dos fármacos , Simulação de Acoplamento Molecular , Proliferação de Células/efeitos dos fármacos
15.
Sci Rep ; 14(1): 9506, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664472

RESUMO

SEC61A1 encodes a central protein of the mammalian translocon and dysfunction results in severe disease. Recently, mutation R236C was identified in patients having autosomal dominant polycystic liver disease (ADPLD). The molecular phenotype of R236C was assessed in two cellular platforms. Cells were immortalized by retroviral transduction of an oncogene (UCi) or reprogrammed to induced pluripotent stem cells (iPSC) that were differentiated to cholangiocyte progenitor-like cells (CPLC). UCi and CPLC were subjected to analyses of molecular pathways that were associated with development of disease. UCi displayed markers of epithelial cells, while CPLCs expressed typical markers of both cholangiocytes and hepatocytes. Cells encoding R236C showed a stable, continuous proliferation in both platforms, however growth rates were reduced as compared to wildtype control. Autophagy, cAMP synthesis, and secretion of important marker proteins were reduced in R236C-expressing cells. In addition, R236C induced increased calcium leakiness from the ER to the cytoplasm. Upon oxidative stress, R236C led to a high induction of apoptosis and necrosis. Although the grade of aberrant cellular functions differed between the two platforms, the molecular phenotype of R236C was shared suggesting that the mutation, regardless of the cell type, has a dominant impact on disease-associated pathways.


Assuntos
Células-Tronco Pluripotentes Induzidas , Canais de Translocação SEC , Canais de Translocação SEC/metabolismo , Canais de Translocação SEC/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular , Autofagia/genética , Mutação , Hepatócitos/metabolismo , Apoptose/genética , Estresse Oxidativo , Proliferação de Células
16.
Mol Med ; 30(1): 55, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664616

RESUMO

BACKGROUND: Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS: In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1ß) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1ß-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS: Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS: This study demonstrated that CHMP5 repressed IL-1ß-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.


Assuntos
Apoptose , Condrócitos , Matriz Extracelular , Hialuronoglucosaminidase , NF-kappa B , Osteoartrite , Transdução de Sinais , Condrócitos/metabolismo , Condrócitos/patologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/genética , Matriz Extracelular/metabolismo , Humanos , Animais , NF-kappa B/metabolismo , Camundongos , Masculino , Modelos Animais de Doenças , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Interleucina-1beta/metabolismo , Proteômica/métodos
17.
Stem Cell Res Ther ; 15(1): 121, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664697

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is the most lethal subtype of breast cancer and, despite its adverse effects, chemotherapy is the standard systemic treatment option for TNBC. Since, it is of utmost importance to consider the combination of different agents to achieve greater efficacy and curability potential, MSC secretome is a possible innovative alternative. METHODS: In the present study, we proposed to investigate the anti-tumor effect of the combination of a chemical agent (paclitaxel) with a complex biological product, secretome derived from human Uterine Cervical Stem cells (CM-hUCESC) in TNBC. RESULTS: The combination of paclitaxel and CM-hUCESC decreased cell proliferation and invasiveness of tumor cells and induced apoptosis in vitro (MDA-MB-231 and/or primary tumor cells). The anti-tumor effect was confirmed in a mouse tumor xenograft model showing that the combination of both products has a significant effect in reducing tumor growth. Also, pre-conditioning hUCESC with a sub-lethal dose of paclitaxel enhances the effect of its secretome and in combination with paclitaxel reduced significantly tumor growth and even allows to diminish the dose of paclitaxel in vivo. This effect is in part due to the action of extracellular vesicles (EVs) derived from CM-hUCESC and soluble factors, such as TIMP-1 and - 2. CONCLUSIONS: In conclusion, our data demonstrate the synergistic effect of the combination of CM-hUCESC with paclitaxel on TNBC and opens an opportunity to reduce the dose of the chemotherapeutic agents, which may decrease chemotherapy-related toxicity.


Assuntos
Proliferação de Células , Células-Tronco Mesenquimais , Paclitaxel , Secretoma , Neoplasias de Mama Triplo Negativas , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Feminino , Animais , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Secretoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Colo do Útero/metabolismo , Colo do Útero/patologia , Colo do Útero/efeitos dos fármacos
18.
J Ovarian Res ; 17(1): 87, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664755

RESUMO

Oxidative damage induced granulosa cells (GCs) apoptosis was considered as a significant cause of compromised follicle quality, antioxidants therapy has emerged as a potential method for improving endometriosis pregnancy outcomes. Here, we found that GCs from endometriosis patients show increased oxidative stress level. Methyl 3,4-dihydroxybenzoate (MDHB), a small molecule compound that is extracted from natural plants, reversed tert-butyl hydroperoxide (TBHP) induced GCs oxidative damage. Therefore, the aim of this study was to assess the protective effect of MDHB for GCs and its potential mechanisms. TUNEL staining and immunoblotting of cleaved caspase-3/7/9 showed MDHB attenuated TBHP induced GCs apoptosis. Mechanistically, MDHB treatment decreased cellular and mitochondria ROS production, improved the mitochondrial function by rescuing the mitochondrial membrane potential (MMP) and ATP production. Meanwhile, MDHB protein upregulated the expression of vital antioxidant transcriptional factor Nrf2 and antioxidant enzymes SOD1, NQO1 and GCLC to inhibited oxidative stress state, further beneficial to oocytes and embryos quality. Therefore, MDHB may represent a potential drug candidate in protecting granulosa cells in endometriosis, which can improve pregnancy outcomes for endometriosis-associated infertility.


Assuntos
Antioxidantes , Endometriose , Células da Granulosa , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Células da Granulosa/metabolismo , Células da Granulosa/efeitos dos fármacos , Feminino , Estresse Oxidativo/efeitos dos fármacos , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Antioxidantes/farmacologia , Endometriose/metabolismo , Endometriose/tratamento farmacológico , Endometriose/patologia , Hidroxibenzoatos/farmacologia , Apoptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
19.
Discov Med ; 36(183): 721-729, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665021

RESUMO

BACKGROUND: Multiple myeloma (MM) is a malignant disorder of plasma cells in the bone marrow. MM causes the clonal proliferation of terminally differentiated plasma cells and the accumulation of monoclonal plasma cells. The enhancer of zeste homolog 2 (EZH2) has been proven to play a significant role in disease development and could act on the signal transducers and activators of the transcription 3 (STAT3) signaling pathway. This pathway contributes to the pathogenesis and maintenance of malignancies. This study aimed to explore the effect of EZH2 on MM progression and the role of the STAT3 pathway in this process. The goal was to increase knowledge and provide further insights about the pathogenesis of MM and identify novel targets for potential therapies. METHODS: The abnormal expression of EZH2 in MM cell lines was tested through real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blot analysis. Based on the MM cell line H929, transfection was used to modify EZH2 expression, followed by the subsequent evaluation of induced alteration in STAT3 activation. The STAT3 phosphorylation activator colivelin and inhibitor stattic were used for promoting and inhibiting the STAT3 activation, respectively. Colony-forming assay, transwell migration assay, and flow cytometry were used to explore cell proliferation, cell migration, and cell apoptosis, respectively. RESULTS: Both the EZH2 mRNA and protein were over-expressed in multiple MM cell lines including H929 (p < 0.001), U266 (p < 0.01), RPMI-8226 (p < 0.01) and MM.1S (p < 0.001). Increased EZH2 promoted cell proliferation (p < 0.001) and migration (p < 0.001) and simultaneously inhibited cell apoptosis (p < 0.001), which could be reversed by inhibited STAT3 activation (p < 0.001). In contrast, promoted STAT3 activation increased cell proliferation (p < 0.001) and migration (p < 0.001), while simultaneously inhibiting cell apoptosis (p < 0.001), despite decreased EZH2 expression. CONCLUSIONS: The effect of EZH2 and STAT3 pathways on MM regulation was revealed and verified. EZH2 promoted the progression of MM cells by activating the STAT3 pathway. The EZH2 and STAT3 pathways could be potential targets for effective MM treatment.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Óxidos S-Cíclicos , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste , Mieloma Múltiplo , Fator de Transcrição STAT3 , Transdução de Sinais , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/genética , Fator de Transcrição STAT3/metabolismo , Humanos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fosforilação
20.
Discov Med ; 36(183): 836-841, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665031

RESUMO

BACKGROUND: Over 80% of lung cancer cases constitute non-small cell lung cancer (NSCLC), making it the most prevalent type of lung cancer globally and the leading cause of cancer-related deaths. The treatment of NSCLC patients with gefitinib has demonstrated promising initial efficacy. However, the underlying mechanism remains unclear. This study aims to investigate how gefitinib affects the mitogen-activated protein kinase kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway-mediated growth and death of NSCLC cells. METHODS: In this study, the NSCLC cell line A549 was cultured in vitro and divided into a control group and a gefitinib group. The viability of the A549 cells was assessed using the methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay. Flow cytometry was employed to detect apoptosis in A549 cells, and the expression of glutamate dehydrogenase (GDH1) mRNA in these cells was determined using real-time quantitative PCR (RT-PCR). Western blotting was utilized to evaluate the protein expression levels of key components in the MEK/ERK signaling pathway, including phospho-MEK1/2, MEK1/2, phospho-ERK1/2, and ERK1/2. Additionally, intracellular glutamine content in A549 cells was measured using a colorimetric method. RESULTS: In contrast to the control group, the proliferation of A549 cells, the transcription level of glutamate dehydrogenase (GDH1), the intracellular glutamine content, and the protein expression levels of phospho-MEK1/2 and phospho-ERK1/2 were significantly lower in the gefitinib group. Moreover, apoptosis markedly increased. CONCLUSIONS: Gefitinib expedites apoptosis and diminishes proliferation in the NSCLC cell line A549 by downregulating the epidermal growth factor receptor (EGFR)/MEK/ERK signaling pathway. This effect is accomplished by fostering the expression of GDH1 to augment glutaminolysis in A549 cells.


Assuntos
Apoptose , Carcinoma Pulmonar de Células não Pequenas , Gefitinibe , Glutamina , Neoplasias Pulmonares , Sistema de Sinalização das MAP Quinases , Humanos , Gefitinibe/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Apoptose/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células A549 , Glutamina/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Glutamato Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...